Petrol aroma in riesling: what the TDN …

Exactly what it is which forms the final flavour profile of a wine is complex, multi-faceted and in the most part unknown. Despite this particular dominating aroma or flavour have come to define particular varieties. The petrol aroma in Riesling is one of them. I don’t know why, but I just can’t get enough of it, I’m a petrolhead. But what exactly is it? A fault? A varietal characteristic? Whatever it is, it‘s aroma that divides wine lovers and mystifies the casual wine drinker. This post will explore its origins and discuss in more detail viticultural and climatic factors affecting its presence and concentration.

The aroma, in particular its origins, is a polarising topic. Visiting the Mosel this year with WSET Diploma students was a unique opportunity to gain insight. The source of this petrol aroma was the subject of much discussion. It was clear there was a general deficiency, and disagreement, in understanding across the board. So what do we know?

The science

1,1,6,-trimethyl-1,2-dihydronapthalene, TDN for short, is a member of the C13-norisoprenoids family and is responsible for the kerosene/petrol aroma in Riesling. Norisoprenoids are a class of aromatic compounds responsible for a range of characteristics associated with wine. They originate in large carotenoid compounds found in grapes and are bound to sugars pre-fermentation, rendering them aromatically inactive. Post-fermentation the presence of aromatically expressive TDN (free not bound) comes primarily as a result of acid hydrolysis (using wine as an acid medium). Over a period of time eventually developing in to aromatic norisoprenoids. There are a number of norisoprenoids, some of which accumulate primarily after fermentation, TDN reaches its highest concentration after extended periods of ageing.

Despite recognition being almost exclusively in Riesling, TDN can be found in a number of non-Riesling wines. Particularly in white varieties like Chardonnay, there are a number of reasons why TDN is present but not recognised. TDN levels as high as 50ug/L have been shown in aged Riesling, with the sensory threshold being around 2ug/L. However, in Chardonnay (and several other white varieties) it is present at levels just below the sensory threshold. Additionally, the expression of TDN depends upon on the precursor carotenoid, in particular β-carotene and lutein. Riesling not only has a much higher carotenoid content than many other grape varieties but also has a lower ratio of lutein to carotene. Increased expression of TDN in Riesling is heightened by this increased ratio as noted by the AWRI.

Climate and viticulture

Particular climatic and viticultural factors have been shown to affect the concentration of TDN. Exposure to sun is likely the most established factor known to affect concentration of TDN in a finished wine. Research has found a spike in the levels of one carotenoid in particular (zeaxanthin) mid-season. This spike correlated well with high TDN levels in the finished wine. Scientists were already aware that zeaxanthin forms in direct response to sun exposure; at lower temperatures its formation is strongly suppressed. This increase in concentration relating to sun exposure likely occurs due to the fact that carotenoids assist the grape tissue in protecting itself from ultraviolet light

In a further study researchers measured TDN concentrations in Riesling at increasing levels of sun exposure, they found that anything higher than 20% of full sun exposure on the grape cluster from veraison onwards increased TDN concentration. As climate change knocks ever-louder on the doors of many wine-growing regions the aforementioned knowledge of when in particular TDN precursors increase could prove crucial in shaping the pruning decisions of vintners wanting to control TDN expression. It has also been noted that lower yields at harvest result in higher concentration of TDN in a finished wine. Whilst little to no research is available on this topic one could deduce (aligned with additional understanding of the impact of lower yield) that a smaller harvest could increase overall concentration. Anecdotally growers have noted that the aroma is more prominent in ‘top wines’ opposed to high-yield cheaper alternatives, although this could be due to the exposure of a particular site.

petrol in riesling

Studies have also shown TDN concentrations to be related to storage temperature. In one study, wine samples stored at 30°C showed considerably higher concentrations of TDN than in samples stored at 15°C, this increase is likely related to the known effect increased temperature has upon reactions. Lower pH in the wine (more acidic environment) has also been shown to increase TDN concentration, this could be explained by the lower pH providing a more acidic environment, better supporting acid hydrolysis over time. Closure type has also been reported to show connection to TDN concentration, cork and synthetic closures are found to ‘lose’ more TDN than screw closures.

In the vineyard

A relationship between water stress and nitrogen deficiency given their relationship to canopy development. Partial drying of the root zone has been found to have an indirect affect on the production of TDN, it reduces canopy size and therefore increases sunlight penetration. Nitrogen deficiency in soil has also been examined as a possible cause for high TDN levels. Some researchers have hypothesised that fertilisation has an effect by encouraging more leaf cover and berry shading thus reducing TDN concentration as a result of reduced sun exposure. Given the research examined thus far it is reasonable to suggest that vintners could employ practises in both the vineyard and the winery which could to some extent seek to manage TDN levels. Both yeast strain and clonal selection have been shown to marginally impact TDN concentration.

Controversy

In 2011, whilst presenting his new range of Alsace wines, M. Chapoutier declared that the petrol aroma in Riesling was the result of a ‘mistake’ during winemaking, he further claimed that decomposition of the veins within the grape (particularly during crushing) were to blame for the fault. Whilst it is true that the carotenoid precursor related to the formation of TDN is almost entirely located in the skin of a grape it does not seem plausible, given the wide range of variables shown to be related to TDN, that the aroma would be either a fault or that crushing would be entirely responsible. Given the extent of available research and relationships already shown to exist (sun exposure etc.) it seems unlikely that crushing (considering many producers likely choose not to crush at all) would be a primary factor in the formation or concentration of TDN, although it would be interesting to see a study attempted. Despite there being no specific research on the topic of crushing/pressing pressure and concentration of TDN it would be logical to suggest that vinification methods could lead to an altered expression of TDN.

Whilst a great deal of work has already been done exploring the factors affecting concentrations of TDN, further work is required to understand how vintners can effectively manage TDN in both the winery and the vineyard.

11 comments

    1. Hey Susanne! Thanks for taking the time to read and comment 😃

      I agree this is definitely a complex one, probably more for the Oenophiles amongst us. I’m going to be writing some blogs this week for the more Casual Winos, these will include reviews of supermarket wines which I think will be good!

      Again, thanks for the feedback I really appreciate it!

    2. The screwcap versus cork closure comment seems to be a bit contradictory. Reading comments from a certain Vivino contributor, there were quite noticeable concentrations of the petrochemical phenomenon in rieslings as young as 2 and 3 years old. I have yet to find this in screwcap sealed rizzas?

      1. Hi Brian!

        There are numerous factors which affect the concentration of TDN, it’s entirely possible that a young Riesling could have high concentrations of the compound dependant on region, vintage and viticultural practise.

        Regards the screw cap, see attached data; https://www.researchgate.net/figure/The-evolution-of-TDN-in-116-commercial-Riesling-wines-separated-into-those-with-screw_fig1_327235578

        You can see on the above linked graph that even the youngest sampled Rieslings far exceed the extremely low sensory threshold of TDN (in both screw and cork)

        I would suggest that the vintage, region, plot and viticultural practise play a significant role in the initial presence of TDN and therefore are more of a contributor to the potential of existence in a bottle, therefore I don’t think that the reason you have not noticed TDN in these bottles is due to the screw cap, more so the aforementioned.

      2. That graph doesn’t not line up with my experiences with this wine under screwcap? Be interesting to hear other peoples views on this?

  1. Wow! Good work on the research. I have also thought it was more of a choice in the winery, and then something that develops further with age. Good old grape compounds! 🙂

  2. Nice write up – thanks for sharing. I always wondered about this and now I know! The first time I tasted a Riesling with this “Petrol” I thought – really? But like anything one learns about what your tasting so it becomes a non issue. Funny thing is when I taste a Riesling without the Petrol, I wonder…” what happen here?” Again thanks for sharing this information! Have a nice day! 😊

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.